Drought Tolerance of Warm-Season Turfgrasses Tested on the Linear Gradient Irrigation System

November 8th, 2017

Dr. J. Bryan Unruh
Extension Turfgrass Specialist
University of Florida/IFAS

Drought Tolerance vs. Drought Resistance

• Drought Resistance = the ability of a plant to survive prolonged drought stress through various mechanisms:
 – Drought Tolerance
 • Escape
 • Hardiness
 – Drought Avoidance
 • Limiting factors influencing soil water uptake
 – deep rooting
 – root viability
 • resistance to soil stresses
 • Limiting evapotranspiration (ET)

A better phrase may be: Drought Response

• Grasses undergo many changes in response to drought.
 – Many of these responses go unnoticed but have a profound effect on the plant’s ability to withstand drought.
 • Some are often very difficult to quantify.
 – Others are readily observed and easily quantified.
Drought Tolerance vs. Drought Resistance

• Drought Resistance = the ability of a plant to survive prolonged drought stress through various mechanisms:
 – Drought Tolerance
 • Escape
 • Hardiness
 – Drought Avoidance
 • Limiting factors influencing soil water uptake
 – deep rooting
 – root viability
 – resistance to soil stresses
 • Limiting evapotranspiration (ET)

• Ability of a turfgrass to tolerate a drought period.
 – Escape – the plant has a life cycle such that it lives through the drought in a dormant state or as seed.
 – Hardiness – the plant develops a greater hardiness to low tissue water deficits.
 • Drought tolerance of protoplasm and protoplasmic membranes from alterations in their properties, and binding of water to protoplasmic constituents.
 • Osmotic adjustments to maintain adequate tissue water content.

Influence of Drought on Turfgrass Rooting

![Graph showing the influence of drought on turfgrass root biomass](image)

Comparative Turfgrass ET Rates and Associated Plant Morphological Characteristics

- Canopy Resistance
- Shoot Density
- # Leaves / Area
- Leaf Width
- Vertical Leaf Extension Rate
- Total Leaf Area = Evaporative Area
- Leaf Orientation

The plant is able to maintain adequate tissue water content and thus avoid or postpone the stress.
So what’s the bottom line?

- As a drought is imposed on a grass, various drought resistance mechanisms operate at different points during the dry-down.

Materials and Methods

- Greenhouse dry down study
 - RCBD with 4 replications acrylic tubes (3.8 X 90 cm) and fritted clay
 - Controlled dry down: less than 10% of available soil water reduced every day

Linear Gradient Irrigation System (LGIS)

- Previous studies on LGIS (Banuelos et al., 2011; Peacock, 2001; Qian and Engelke, 1999)
 - Determine minimal and optimal water requirements
 - Evaluate drought responses of different species and cultivars

Jing Zhang and Bishow Poudel
Former Ph.D. students @ UF

Materials and Methods

- Field dry down study
 – Location: Plant Research and Education Unit (PSREU)
Materials and Methods

• Plot establishment (RCBD with 4 replications)
• Plot size (10’ × 80’)
• Irrigation (twice weekly, 120% of ET₀)

Materials and Methods

• Zoysiagrass
 — Toccoagreen, Zeon, Zorro, Emerald, Cavalier, El Toro, Empire, JaMur, Palisades, ‘BA-189’
• St. Augustinegrass
 — Floratam, Classic, Palmetto, Raleigh, Sapphire, Captiva
• Bermudagrass
 — Common, Celebration, Princess 77, TifTuf, Tifton 10
• Seashore Paspalum
 — Aloha, SeaDwarf, Seaside Supreme
• Bahiagrass
 — Argentine
• Centipedegrass
 — Common, TifBlair
• Buffalo grass
 — Density

Materials and Methods

• Identified dates of drought periods:
 — June, 2009
 — September, October, 2010
 — May, June, and July, 2011
Results

• Among St. Augustinegrass cultivars - Palmetto had lower quality compared with Captiva, Classic, Floratam and Raleigh except when irrigation level was more than 80% ET₀.
 – These 4 cultivars had similar quality, and they performed no differently with Argentine bahiagrass at 37-105% ET₀ irrigation level.
• This indicates St. Augustinegrass can perform equivalently to bahiagrass when certain levels of irrigation is applied.
 – In this case, more than 37% ET₀.

Zoysiagrass

• Irrigation requirement of zoysiagrass
 – 54-80% ET₀ irrigation is needed to prevent turf quality decline below 5.5
• Excess irrigation had negative effect on turf quality of zoysiagrass
 – Future study
 • Root penetration
 • Disease and weeds
Rainfall vs. Evapotranspiration - 2016

Florida Panhandle (Carrabelle/Jay)

Irrigation Needs – Florida Panhandle

<table>
<thead>
<tr>
<th></th>
<th>Daily ET</th>
<th>Weekly ET</th>
<th>67%</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAN</td>
<td>0.05</td>
<td>0.35</td>
<td>0.23</td>
</tr>
<tr>
<td>FEB</td>
<td>0.07</td>
<td>0.49</td>
<td>0.33</td>
</tr>
<tr>
<td>MAR</td>
<td>0.10</td>
<td>0.67</td>
<td>0.45</td>
</tr>
<tr>
<td>APR</td>
<td>0.13</td>
<td>0.91</td>
<td>0.61</td>
</tr>
<tr>
<td>MAY</td>
<td>0.16</td>
<td>1.09</td>
<td>0.73</td>
</tr>
<tr>
<td>JUN</td>
<td>0.18</td>
<td>1.23</td>
<td>0.82</td>
</tr>
<tr>
<td>JUL</td>
<td>0.18</td>
<td>1.23</td>
<td>0.82</td>
</tr>
<tr>
<td>AUG</td>
<td>0.15</td>
<td>1.05</td>
<td>0.70</td>
</tr>
<tr>
<td>SEP</td>
<td>0.13</td>
<td>0.91</td>
<td>0.61</td>
</tr>
<tr>
<td>OCT</td>
<td>0.10</td>
<td>0.70</td>
<td>0.47</td>
</tr>
<tr>
<td>NOV</td>
<td>0.07</td>
<td>0.46</td>
<td>0.30</td>
</tr>
<tr>
<td>DEC</td>
<td>0.05</td>
<td>0.35</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Bermudagrass & Buffalograss

Water Efficiency

Tifway Celebration Princess 77 Buffalograss Tifton 10

Water Use Efficiency

Vadisy

Chlorophyll Index
Cultivar comparison

- Bermudagrass (BD) genotypes comparison
 - T10 (lower color, quality, and density ratings, and lower Chlorophyll index)
 - TifTuf had higher chlorophyll index (CI) than other bermudagrass genotypes (except Princess 77) when the irrigation level was < 105% ETc.
 - Although visual ratings provided less separation, TifTuf maintained higher quality at all irrigation levels.

Results

- Common and TifBlair centipedegrass - rated in the top group along all irrigation levels.
 - Argentine bahiagrass was rated similarly in quality to centipedegrass

Preliminary Observations

- All grasses respond to drought – they just do it differently.
 - Zoysigrasses wilt and fire very quickly and very uniformly (green → brown).
 - St. Augustinegrass fades over time with some green foliage lingering for weeks (green → yellow-green → yellow → brown).
 - Centipedegrass wilts quickly but also recovers (turns green again) very quickly.
 - Seashore paspalum can be very slow to recover due to the plant’s priority on producing below-ground plant parts.
 - Bermudagrass and bahiagrass are very drought responsive but may not provide the desired turf quality.
Multi-Location Trial to Establish Maintenance Requirements and Performance of New Bermudagrass Cultivars for Fairway Use

- Bermudagrass Cultivars:
 - Tifway 419 Celebration
 - TifGrand
 - TifTuf
 - Latitude 36
 - Bimini
 - Premier Pro (GNV & JAY)

- Turfgrass Performance
- Drought Response
- Fertility Requirements
- Playing Surface Performance

J. Bryan Unruh, Ph.D.
West Florida Research and Education Center
University of Florida/IFAS
jbu@ufl.edu

www.gatorturf.com
http://edis.ifas.ufl.edu

www.facebook.com/gatorturf
www.facebook.com/UFTurf

UF UNIVERSITY OF FLORIDA
USGA GCSAA
Turfgrass Science